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Theory of Clarifier Operation. 1. Quiescent-Hindered 
Settling of Flocculating Slurries 

JAMES H. CLARKE 
ASSOCIATED WATER AND AIR RESOURCES ENGINEERS, INC. 
NASHVILLE, TENNESSEE 31204 

ANN N. CLARKE and DAVID J. WILSON* 
DEPARTMENTS OF CHEMISTRY AND ENVIRONMENTAL ENGlNEERING 
VANDERBILT UNIVERSITY 
NASHVILLE. TENNESSEE 31235 

Abstract 

The operation of quiescent (batch) clarifiers operating in the Class 111 mode 
(hindered settling) with flocculating slurries is modeled by means of a set of 
nonlinear partial differential equations, the continuity equations for the 
individual species of particles. Disintegration of the larger particles by viscous 
drag forces is assumed to be first-order. The equations are integrated numeri- 
cally for the case of batch settling (such as is used in jar tests), and the depend- 
ence of settling characteristics on the parameters of the model is studied. 

INTRODUCTION 

Clarifiers and thickeners represent one of the most common types of 
equipment used in the processing of minerals and the treatment of in- 
dustrial and municipal wastewaters. In the activated sludge process, settled 
wastewater is mixed with microorganism-rich sludge recycled from a 
clarifier for biological oxidation. At the present time, precipitation and 
flocculation followed by clarification is the most widely used class of 
methods for the removal of toxic metals from waste streams (1-4). Clari- 
fiers operate in four modes (5) : Class I, in which nonflocculating particles 

*To whom reprint requests should be addressed. 
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768 CLARKE, CLARKE, AND WILSON 

in quite dilute suspensions settle independently of each other, usually 
according to Stokes’ law; Class 11, in which the particles’ settling motion 
is that of independent, freely falling particles, but in which collisions 
between particles may result in agglomeration, first analyzed by 
Smoluchowski (6, 7); Class 111, or hindered settling, zone settling, or 
blanket settling, in which (possibly agglomerating) particles are sufficiently 
close together that one can no longer describe their motion as independent 
free-fall in a viscous medium; and Class IV, or compression settling, 
in which water is slowly squeezed up through the narrow interstices of a 
relatively dense floc by virtue of the weight of the overlying floc. We shall 
be concerned with Class I11 operation, with Classes I and 11 included as 
limiting cases of the more general analysis. 

Fair, Geyer, and Okun (8) give a good discussion of hindered settling, 
including its relation to filter backwashing, and the effect of viscous 
shear forces in causing the particles to break up on reaching a limiting 
size. Fitch, in McCabe and Eckenfelder’s book (9),  describes the four 
types of settling and gives a qualitative analysis of zone settling. Canale 
and Borchardt discuss zone settling in some detail, with engineering 
design formulas, but no mathematical model of the process (5). Eckenfelder 
(lo),  Eckenfelder and Thackston ( I I ) ,  and Metcalf and Eddy, Inc. (12) 
discuss the topic, concluding that heavy reliance on batch settling data 
is necessary, inasmuch as detailed analysis appears to be intractable. 
Early papers of interest in that they introduced new, more sophisticated 
concepts into the field of sedimentation include Hazen (13), Coe and 
Clevinger (I4), Smoluchowski (6, 7), Camp (15), and Steinour (Id). 

The modern approach to the theory of Class 111 sedimentation dates 
back to the mathematician Kynch (17); he assumed that the velocity of 
fall of a particle depends only on the local particle concentration, and 
then made use of the continuity equation. He was able to demonstrate 
the formation of layers where the particle density abruptly changes its 
value. Despite the fact that computational limitations forced Kynch 
to restrict himself to monodisperse systems without flocculation, it is 
clear from sL5recuent work that this paper was of major importance 
in that it inspired new approaches and efforts in the field. Dick and 
Ewing found that, contrary to Kynch’s assumption, the initial settling 
velocity of biological sludges does depend (weakly) on tank depth, al- 
though sand settling velocities are independent of tank depth, in agreement 
with Kynch’s postulate (18). Talmage and Fitch (19) and Fitch (20) also 
observed that Kynch‘s postulate is not valid as one approaches Class 
IV conditions (compression) and noted that the theory does not include 
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THEORY OF CLARIFIER OPERATION. I 769 

flocculation, an important factor. Shannon and his co-workers in a 
series of papers examined batch and continuous thickening of spheres 
without flocculation; they also showed that the intersection of a rising 
concentration gradient with the clear fluid-slurry interface is responsible 
for nonlinearity in settling curves (22-23). 

Scott, examining mathematical models for the mechanism of thicken- 
ing, presented a useful formula for calculating the lab velocity of a falling 
particle*with a boundary layer of bound water in terms of the solids 
concentration (24). The importance of this boundary layer of water was 
previously noted by Foust et al. (25). Vand published a formula for the 
viscosity of a suspension in terms of solvent viscosity, solids volume 
fraction, and a shape factor (26); this was an extension of earlier work 
by Einstein (27). Comings and co-workers developed a general expression 
for the hindered settling capacities from measured settling rates and 
slurry properties (28). They pointed out that the density and viscosity 
of the slurry, rather than those of the liquid, should be used. McLaughlin 
carried out a general analysis of the settling of suspensions in terms of 
the equations of continuity ; he included flocculation and diffusion effects 
but did not pursue the differential equations in detail (29). Gaudin and 
Fuerstenau’s work is concerned with compression (Class IV) settling, 
but their model of fluid flow through tubes and tubules in the slurry 
appears to lend itself well to analysis of fluid flow through a sludge 
blanket in Class I11 operation (30). Thomas has related hindered settling 
floc characteristics to rheological parameters and has published experi- 
mental data on the behavior of non-Newtonian suspensions (31,32). 
Tarrer and co-workers combined Kynch’s theory for hindered batch 
settling with a plug flow fluid pattern to compute the effect of sludge 
blanket height and solids residence time on the thickening capacity of 
continuous flow clarifiers (33). Reimann and Menschel presented a 
derivation of the settling rate expression for nonflocculating suspensions 
of spherical, monodisperse particles for porosities (voids) of 0.3 to 0.6; 
they found good agreement with the experimental data (34) .  

Tracy and Keinath (35) published an analysis of a dynamic model for 
the thickening of activated sludge ; the model incorporates all the oper- 
ating parameters pertaining to the thickening function of a secondary 
clarifier but does not appear to take flocculation and particle disruption 
into account. The paper also contains a good review of the literature 
up to 1972. Gernmell (36) discussed the principles and theory as they 
bear on the mathematical modeling and simulation of the aggregation 
of suspended particles. Dick and Suidan (37) discussed the simulation 
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770 CLARKE, CLARKE, AND WILSON 

of clarification and thickening, and presented a well-documented com- 
puter program for use in such modeling. 

Davies et al. (38) and Carstensen et al. (39) have both noted the marked 
effect of zeta potential on hindered settling rates. Davies suggests that 
maximum reduction of surface polarity without flocculation is the most 
efficient condition for gravity settling. Studies on the hindered settling 
of barium sulfate (40); calcium carbonate in p-xylene (41); calcium 
carbonate in water (42); quartz, magnetite, and coal (43) ; titanium 
dioxide (44) ; and polystyrene spheres in cyclohexanol at various Reynolds 
numbers (45) give a sampling of the experimental data available beyond 
what has been cited above. 

Interestingly enough, the detailed experimental studies of Barnea and 
Mizrahi (46) on settling liquid-liquid dispersions show no evidence of 
rising droplet concentration gradients. Dixon (47) has recently claimed 
that the occurrence of such gradients can only be interpreted as indicating 
physical contact between the particles-i.e., Class 1V settling. We suspect 
that Dixon’s neglect of inertial forces and the finite thickness of the 
liquid boundary layers around the particles may make the analysis not 
quite as straightforward as he indicates. His work certainly poses a 
challenge to the conclusions of Coe and Clevinger (14), Kynch (17), 
and many other workers in the field, and is in major part responsible 
for our interest in modeling Class I11 settling. 

ANALYSIS OF BATCH SETTLING 

We analyze the operation of quiescent batch clarifiers; this is relevant 
to the commonly used batch settling tests used in preliminary studies, 
and with minor modification it can be made to describe the operation of 
rectangular clarifiers, to be discussed in a later paper. 

The continuity equation for coalescing and disintegrating particles 
we take to be 

Iz = 1 ,2 , .  . . (I) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
0
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



THEORY OF CLARIFIER OPERATION. I 77 I 

Here ck = concentration of k-particles, aggregates of k elementary par- 
ticles 

Vk = 2[Ap(c)1grk2 = velocity of a k-particle relative to the sur- 
9Y(C) 

rounding liquid, calculated from Stokes' law 
(assumes low Reynolds numbers) 

r, = radius of a k-particle, assumed spherical, = - (3:3 l I 3  
V ,  = volume of an elementary particle 
Vk = volume of a k-particle, = k V ,  

q(c)  = viscosity, a function of particle concentrations 
Ap(c)  = difference in density between a particle and the surrounding 

slurry, a function of particle concentrations 
v; = velocity of a k-particle relative to the laboratory 
u" = velocity of liquid relative to the laboratory 
t = time 

x = distance down from the top of the clarifier 
ktm- , ,  = rate constant for the disruption of an m-particle into an n- 

particle and an (m - n)-particle 
c = (c,, c2, c 3 , .  . .) = concentration vector 
g = gravitational constant 

d n , j  = 1 if n = j ,  = 0 if IZ # j 
[n/2]  = greatest integer I 4 2  

N = maximum number of elementary particles which may agglome- 
rate to form a composite particle 

In Eq. (I), the first two summations on the right-hand side describe 
the coalescence of particles through collisions; the next term, the di- 
vergence of the particle flux due to free fall through the liquid; and the 
last two summations, the disruption of composite particles through 
viscous drag forces. 

In quiescent operation the volume flow of solids down is equal to 
the volume flow of liquid up, which yields 

c u;cnvn + u y 1  - c CnVJ = 0 (2)  
n n 

so 
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772 CLARKE, CLARKE, A N D  WILSON 

Now v; = 
and u” in terms of the v,. 

+ v”, and the vk are known functions of c ;  we need the u; 

- c (v ,  + U”)C,V, 

from Eq. (3), from which 

and 

u; = V k  - c v,c,vn 
n 

I t  is easily shown that 

where ps = density of solid particles 
p l  = density of liquid 

We use Einstein’s formula (27) or one of the more elaborate formulas 
due to Vand (26) to calculate the viscosity of the slurry: 

9 = qo(l + 2 . 5 ~ )  (Einstein) 

r]  2 . 5 ~  + 2 . 7 ~ ~  
log - = 

90 1 - 0.609~ 

c = xn c,V,,, the volume solids concentration 

These formulas all assume spherical particles. 
We estimate the disruption rate constants by assuming that they 

increase proportionally to the viscous drag force on the particle, given 
for an m-particle by mV,g(Ap), and that they are proportional to the 
number of ways in which the m elementary particles can be partitioned 
into two groups, one of n-particles and the other of m - n-particles, 
m![n!(m - n)!].  Thus, with some.trepidation, we take 

where IC is a proportionality constant to be assigned a value large enough 
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THEORY OF CLARIFIER OPERATION. I 773 

to prevent composite particles from agglomerating to unrealistically 
large sizes. 

This completes the specification of parameters and functions in Eq. 
(1). We next assign values to c(x, 0), the initial concentration distribu- 
tion, and then integrate Eq. (1) forward in time, noting that our boundary 
conditions are zero flux at the top and bottom of the clarifier. This will 
be done by means of a predictor-corrector method which we have used 
previously (48, 49) and found to be quite stable. We choose a discrete 
set of equally spaced values of x ;  x ,  = (m - +)Ax, m = 1, 2,. . . , M .  
This mesh approach converts Eq. (1) into a set of nonlinear first-order 
ordinary differential equations, as follows. We let c,(x,, t )  = c(n, m, t) .  
Then 

ac 1 
z ( n , m ,  t )  = -[-v’(n,m, t)c(n, m, t )  + u’(11, m - 1, t ) c ( n , m  - 1, t ) ]  Ax  

x z(r j  + rnWj)’ 
N--n 

N 

b / 2 1  
- k;,n-jc(n,m,t) n = 1,2, .  . ., N (12) 

j =  1 
m =  1,2, . . . ,  A4 

A4 = number of slabs into which the clarifier is partitioned. 

The boundary condition at the top of the clarifier corresponds to the 
elimination of particle flux into the top slab (of thickness Ax)  from 
above (the second term in the square bracket of Eq. 12). The boundary 
condition at the bottom of the clarifier corresponds to elimination of 
particle flux from the bottom of the bottom slab-deletion of the term 
-u’(n, 1, t)c(n, 1, t ) / A x  from Eq. (12), m = 1. 

We now have specified all of the dc(n, m, t ) /dt  as functions of {c(i , j ,  t ) }  = 
2(t),  the array of all the particle concentrations at the various values of 
x. We write this more compactly as 
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'174 CLARKE, CLARKE, A N D  WILSON 

The integration of Eq. (12') is then done by the following predictor- 
corrector algorithm. Predictor (starter formula) : 

c*(n, m, A t )  = c(n,  m, 0) + Atf[t?(O)] 

c*(n, m, t + A t )  = c(n, m, t - A t )  + 2Atf [e( t ) ]  

(13) 
Predictor (general formula) : 

(14) 
Corrector: 

At 
2 c(n,  m, t + A t )  = c(n ,  m, t )  + - ( f [ e ( t ) I  + f [e*( t  + A t ) ] }  (15) 

Our actual calculation of the velocities of fall of the particles relative 
to the liquid was done by a refinement of Stokes' law, which permits 
us to deal with intermediate Reynolds numbers which might arise with 
slurries of solids having a high density. We use an improved formula for 
the drag coefficient (50) : 

24 3 
'- Re Re C - - + 1/2 + 0.34 

Re = 2urp/q (17) 

where v = particle velocity 
r = particle radius 
p = slurry density 
'1 = slurry viscosity 

This yields the following result for the velocity of the particle relative 
to the liquid: 

where Ap = particle density - slurry density 

This is readily solved iteratively for u,; one starts with the Stokes' law 
expression for u, on the right-hand side. 

In our analysis we have assumed perfect packing-that is, an n-particle 
(an agglomeration of n elementary particles) is assumed to contain no 
voids. This model should be valid for droplet coalescence, but certainly 
underestimates the volume of composite solid particles. Vold investigated 
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THEORY OF CLARIFIER OPERATION. I 77s 

a model similar to that which we are using (51), and found that the 
radius of an n-particle, r,, is given by 

r, = r1n0.43 (19) 

V” = V&29 (20) 

(21) 

from which we find 

for the volume of an n-particle, and 
-0.29 

Pn - Pliq = ( P L  - P1iq)n 
for the difference between the density of an n-particle and the density of 
the liquid phase. The slurry density is given by 

 slurry = PIiq + (PI - Pliq)V,% (22) 
We assume that it is liquid phase which is occluded in the composite 
particles. 

As we shall see in the next section, solution of Eq. (12) does not lead 
to the rising plane of slower-settling floc remarked on by many workers, 
the existence of which is, according to Dixon (47), evidence that 
Class IV settling (compaction) is starting to take place. We felt that 
failure to observe this plane might be telling us more about the limitations 
of our mathematics than about physical reality, so have explored another 
discrete representation of Eq. (1). We wish to take account of the fact 
that a particle falling into a region of relatively high solids volume fraction 
is slowed down by the increased viscosity and decreased difference in 
density between the particle and the surrounding slurry. For simplicity 
we examine monodisperse systems ; generalization to flocculating systems 
is straightforward, and our computer programs deal with flocculating 
systems. 

We first approximated Eq. (l), written for monodisperse systems, by 

ac 
-(m, t )  = ([u’(m - 1, t )  + u’(m, t)][c(m - 1, t )  + c(m, t ) ]  
at 

- [u’(m, t )  + u’(m + 1 ,  t)][c(m, a )  + c(m + 1 ,  t ) ] } /4Ax 

(23) 
Here we are simply using arithmetic averages of the particle concentra- 
tions and velocities at the centers of two adjacent slabs to calculate the 
flux of particles through the boundary between the slabs. This was un- 
successful; the very large concentration gradients which can occur led to 
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776 CLARKE, CLARKE, A N D  WILSON 

large fluxes from slabs which were already nearly empty, resulting in 
negative concentrations. We concluded that we had best focus our atten- 
tion on finding a suitable average of the velocities in our two adjacent 
slabs. We denote the slab velocity of a particle falling through the bound- 
ary from slab i - 1 into slab i by I J -  For the case where ui- = ui, 
we would expect that ui- ,i = vi. If either ui or v i -  I is very small, we wish 
to have u ; - , , ~  very small. An average which satisfies both of these re- 
quirements is given by 

We then approximate Eq. (l), written for monodisperse systems, by 

The results obtained using this modification are discussed in the next 
section. 

RES U LTS 

The model for quiescent hindered settling of flocculating particles was 
defined by nine input variables. These are listed in Table 1 along with 
the values employed in the series of runs used to determine model re- 
sponse. A time step and liquid density must also be included. For this 
study the liquid density was chosen to be 1.00 g/cm3 and not varied. 

Run 1. Run 1 was taken to be the standard run. In subsequent runs 
one variable at a time was changed and the results compared to the 
standard run. A clarifier height of 20 cm was selected in an effort to relate 
the simulation results to the jar test. The jar test is frequently used to 
assess the settling characteristics of a floc to determine a change in floc 
nature or prior to the design or modification of a clarification system. 
Figure 1 shows the settling curves generated by this model for the standard 
case. These were plotted as compartment number vs total mass per unit 
volume (in grams per cubic centimeter) every 10sec. Table 2 describes 
the settling in terms of percent of the total mass found in the bottom 
compartment of the clarifier at various elapsed times. Over one-half the 
mass had settled out in 30 sec; over 90 % in 110 sec. It should be noted 
that a compartment comprised 10% of the total clarifier volume. Table 
3 presents a third means of assessing the settling characteristics. Spe- 
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60 50 40 30 20 IOsec 
I 

3 

5 5  

d 
c 

E c 

i 7  
0 

9 

I O - ~  I O - ~  ~ X I O - ~  I O - ~  
Concentration, gm/cm3 

FIG. 1. Total mass per compartment vs compartment number for Run 1, 
standard conditions. 

TABLE 2 

Percent Total Mass in Last Compartment 
~ ~ ~~ 

Run number 

Time(sec) 1 2 3 4 5 6 7 8 10 11 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
80 
90 

100 
110 
1 20 
130 
140 
150 
160 

10.0 10.0 10.0 10.0 10.0 5.0 10.0 10.0 
23.2 18.7 15.8 12.7 15.1 12.8 

23.2 37.2 28.0 22.4 20.9 11.6 21.2 15.5 
50.7 37.3 29.4 26.2 28.0 18.2 

37.2 62.4 46.5 36.4 31.4 18.6 34.9 20.0 
71.4 55.4 43.3 36.6 41.8 

50.7 77.6 63.7 49.9 41.6 25.7 48.5 
81.9 71.1 56.1 46.4 54.8 

62.4 84.8 77.4 61.7 50.8 32.8 60.4 
82.5 66.6 54.9 65.4 

71.4 86.5 70.8 58.6 39.9 69.7 
89.5 74.2 61.8 73.3 

77.6 91.7 77.1 64.6 46.9 76.3 
93.3 79.5 67.1 78.7 

81.9 53.8 
84.8 60.2 
87.0 65.9 
88.8 70.8 
90.2 74.8 
91.6 77.9 
92.8 
93.9 
94.9 
95.7 

10.0 10.00 

23.2 68.0 

37.2 90.2 

50.7 95.1 

62.4 

71.3 

77.6 

81.9 
84.8 
87.0 
88.7 
90.2 
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TABLE 3 
Average Rate of Reduction of Initial Concentration, Compartments/sec 

1/2 original 1/10 original ljlO0 original 
Run no. concentratioo concentration concentration 

1, 6 
2 
3 
4 
5 
7 

0.153 
0.305 
0.188 
0.154 
0.096 
0.154 

0.051 
0.102 
0.118 
0.052 
0.041 
0.046 

0.038 
N.A. 
0.036 

e 

(I 

0 

a Reduction not achieved by 65 sec. 

cifically, this compares the average rate at which the central concentration 
in a compartment is reduced by 50, 90, and 99 %. 

Run 2. The first variable changed was the floc density. Run 2 employed 
a floc density of 1.10 g/cm3 as compared to the standard 1.05 g/cm3 
value. Since the floc density appeared in the model as a difference, pfloc - 
pliquid (e.g., Eq. l8), this new value represented a 100% increase (viz., 
1.05 - 1.00 = 0.05 vs 1.10 - 1.00 = 0.10). As anticipated, the impact 
was very great. Figure 2 shows the settling curves for Run 2, while Tabies 
2 and 3 show the effect numerically. The factor of 2 is evident in both 
tables. The percent settled into the bottom compartment at 20 sec in Run 
1 equaled that percentage at 10 sec for Run 2; at 40 sec in Run 1,  20 sec 
in Run 2; etc. The reduction rate for Run 2 was twice that for Run 1 for 

I lo+ 
10-5 10-Lcen+ra+ion 

FIG. 2. Total mass per compartment vs compartment number for Run 2, 
ps  = 1.10. 
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the 1/2 and 1/10 cases. Insufficient data were generated to evaluate the 
reduction to l / l O O  of the original compartment concentration. 

Runs 3 and 9. According to Table 1, Run 3 had volume fraction solids 
of 0.005 compared to the standard value of 0.001. Figure 3 shows the 
corresponding settling curves. As anticipated, the increased solids con- 
centration in the clarifier increased the settling rate. This reflected the 
increase in the rate of formation of the larger sized particles. The values 
listed in Table 2 show the increased percent solids in the bottom com- 
partment in Run 3 as compared to Run 1. The corresponding increased 
reduction rate is seen in Table 3. However, we also anticipate that con- 
tinued increase in the volume fraction will eventually have the opposite 
effect when a sufficiently high value is reached. The ambient viscosity is 
an increasing function of particle concentration (see Eq. 10). As such, 
the resultant increase in viscosity could offset the response from increased 
particle size and retard settling. We verified this in Run 9 where we 
employed volume fraction solids of 0.130. Table 4 summarizes these 
results. For a given elapsed time, even as little as 20 sec, there were ap- 
preciably fewer solids amassed in the bottom compartment for Run 9 
than were amassed in either Run 1 or 3, indicating retarded settling. 

Runs 4 and 7. The fourth and seventh runs varied the index used to 
define the particle distribution, Particles were distributed inversely pro- 
portional to their size raised to the given index (power). Increasing the 
distribution index weighted the population toward the smaller-sized 
particles. Since smaller particles have slower settling velocities, scttling 
should be retarded. Figures 4 and 5 are the settling curves for the runs 

60 50 40 30 20 lOsec 
I 

e 3  

$ 

c 

5 s  
E 
c 

0 0 

9 

10-5 10-l 10-3  lo-* 
concentration 

FIG. 3. Total mass per compartment vs compartment number for Run 3, 
VFRAC = 0.005. 
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TABLE 4 
Summary of Volume Fraction (VFRAC) Variation Study 

~ 

Parameter Run 1 Run 3 Run 9 

VFRAC 
llo 
ll" 

0.001 0.005 0.130 
0.01 0.01 0.01 
0.010025 0.01013 0.02 

Percent of Total Mass in Compartment 10 

At Osec 19.9 

10 23.2 
20 37.2 

- 5 
10.0 
18.7 
28.0 
46.5 

10.0 
15.8 
21.6 
32.2b 

~~ 

Calculated from Eq. (10) at time = 0 sec. 
* Extrapolated. 

I .- 
I o - ~  I 0-3 I -  

concentration 
I O - ~  

FIG. 4. Total mass per compartment vs compartment number for Run 4, 
index = 3. 

c 

c 

10-5 

FIG. 5 Total mass per compartment vs compartment number for Run 7, 
index = 5. 
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where the index equaled 5 and 7, respectively. However, the difference 
was not great. This was due to the occurrence of the flocculation and 
disruption processes. Numerical representation of these results is found 
in Tables 2 and 3. The index = 3 run was only 1 or 2 %  lower in settled 
mass than the standard, index = 2, run. Similarly, the index = 3 and 
index = 5 runs agreed to within a few percent, the latter run correctly 
accumulating the slightly lower percent mass. In Table 3, Runs 1 and 
3 are identical to within round-off error as is the value for the 50% 
reduction obtained for Run 7. A more sensitive analysis would be the 
evaluation and comparison of the residual mass in the first compartment 
for these three runs. Such residual mass can be considered “fines.” Table 
5 presents this evaluation. As anticipated, the higher the index, the higher 
the residual solids retained in the top compartment. Again, this was a 
result of the higher number of smaller (especially unit sized), slower falling 
particles initially present. 

Run 5. In Run 5 the number of disruptions experienced by each particle 
size was increased from 0.5 to 1.0 disruptions per second (AKAP). As 
in Runs 4 and 7, this change weighted the population toward the smaller 
sizes, and slower settling was anticipated. Figure 6 shows the settling 
curves for Run 5. A significant retardation in settling rate did occur. 
This is easily verified by the numerical presentation in Tables 2 and 3. 
While the initial differences in particle distribution created by index 
variation can be reduced in time by the agglomeration/disruption pro- 

TABLE 5 

Comparison of Index Runs, Percent Residual Mass“ in Compartment 1 

Run 1 Run 4 Run 7 
Time (sec) (index = 2) (index = 3) (index = 5) 

~~ 

0 
10 
20 
30 
40 
50 
60 

60 

~ 

10.0 
33.9 
15.2 
8.0 
4.6 
2.6 
1.5 

10.0 
36.4 
16.6 

8.9 
5.0 
2.9 
1.7 

% of Total Massb in Compartment 10 after 60 sec 

77.6 77.1 

10.0 
40.6 
19.2 
10.3 
5.8 
3.4 
2.3 

76.3 
~~~~~ ~ ~~ 

Percent of initial mass, i.e., in compartment at time = 0. 
Percent of mass from all 10 compartments. 
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concentration 

FIG. 6. Total mass per compartment vs compartment number for Run 5, 
x = 1.00 disruptions/sec. 

cesses, this is not the case for variations in AKAP values, since the disrup- 
tion process is going on continuously during the run. 

Run 6. In Run 6 two variables were simultaneously changed. These 
were clarifier height, CLARL, and the number of compartments, NC. 
This was done in order to retain the same DELTAX value (see Eq. 12, 
flux term), height of each compartment. Doubling the height of the 
clarifier essentially doubled the settling period by a factor of 2. The 
settling curves can be seen in Fig. 7. The increase in settling time was 
easily determined by comparison of the percent total solids mass in 
the bottom compartment at time T for Run 1 and 2 T  for Run 2 in Table 
2-vis., at 20 sec, Run 1, 37.2%, and at 40 sec, Run 6, 32.8%; 40 sec, 
Run 1, 62.4%, and 80 sec, Run 6 ,  60.2%; etc. A 40-cm clarifier can also 

10-5 10-4 10-3 10-2 
concentration 

FIG. 7. Total mass per compartment vs compartment number for Run 6, 
clarifier length = 40 cm, number of Compartments = 20. 
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be representative of other jar test systems. It should be noted that pre- 
liminary studies showed that increasing the number of compartments to 
increase the sharpness of descent linearly increased the computer time 
but only fractionally improved the definition of the boundary between the 
subsiding slurry and the supernatant. Doubling the number of compart- 
ments for a given clarifier height (i.e., halving DELTAX) only improved 
the sharpness of the slurry-supernatant boundary by 25%. Therefore a 
reasonable number of compartments (and concomitant DELTAX value) 
was selected without additional concern about increasing boundary 
sharpness. Moreover, our experience, especially with biological flocs, 
indicates that varying degrees of boundary definition in settling occur. 

Run 8. The increase in system viscosity by increasing qo in Run 8 
resulted in a different erect than increasing the viscosity of the system by 
increasing the volume fraction of solids. As anticipated, the settling time 
was increased by a factor of approximately 2 over the settling time deter- 
mined in the standard run (qo = 0.01 and 0.02 P in Runs 1 and 8, respec- 
tively). Figure 8 shows a few settling curves (until time = 20sec). The 
percent total mass in the last compartment for this run is slightly more 
than 112 the amount settled in the standard run. This is a ramification 
of the fact that the viscosity, through the definition of V,, (Eq. 18), not 
only affected the flux term but also the agglomeration terms (see Eq. 1, 
terms 1, 2, and 3). 

Run 10. The same variable values were employed in Run 10 as were 
used in the standard run. The difference lay in the calculation of the flux, 
using a “reduced” velocity as discussed earlier (see Eqs. 24 and 25). We 
anticipated a “back-up” (i.e., increase) in solids in the penultimate (9th) 

FIG. 8. Total mass per compartment vs compartment number for Run 8, 
qo = 0.02 P. 
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60 50 40 30 20 10sec 

FIG. 9. Total mass per compartment vs compartment number for Run 10. 
Standard conditions employing “reduced velocity.” 

compartment as solids built up in the last, making it more difficult for 
additional mass to enter the last compartment. Figure 9 shows the resultant 
settling curves. As anticipated, the model yielded little difference in the 
amount of solids accumulated in the bottom compartment [see Table 2). 
Rather, the effect can be seen by comparing the percent solids in the 
9th compartments for Runs 1 and 10. As the time elapsed increased, 
even at the relatively low volume fraction solids of 0.001, a difference 
does become evident. See Table 6. This difference increased with in- 
creasing time. 

Run 11. The final value varied was the size of the unit particle radius. 

TABLE 6 

Percent of Total Mass in Penultimate (9th) Compartment 

Time (sec) 
~~ 

Run 1 
~~ ~ 

Run 10 

0 
10 
20 
30 
40 
50 
60 
I 0  
80 
90 

100 
110 

10.0 
10.0 
9.9 
9.3 
7.9 
6.3 
4.9 
3.9 
3.3 
2.9 
2.6 
2.3 

10.0 
10.0 
9.9 
9.3 
8.0 
6.4 
5.0 
4.0 
3.4 
3.0 
2.7 
2.5 
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Increasing the unit particle size had a dramatic effect, greatly reducing 
the settling time. As seen in Table 2, after only 30 sec over 95% of the 
total system’s mass had entered the bottom compartment. This compared 
with only 50.7% in the standard run. When only 10 sec had elapsed, 
68 % had reached bottom. In the same period only 23.2 % had fallen in 
the Run 1 simulation. 

Because of the continuous flocculation/disruption processes accom- 
panying the particle flux, the particle size distribution in each compartment 
was continuously changing. We present in Table 7 particle distributions 
(in Compartment 10) for Runs 1-5 and 7 at time 0,25, and 50 sec. In order 
to facilitate meaningful comparisons, particle populations are reported 
per milligram of floc. 

As described earlier, varying the index will change the initial size 
distribution. Runs 4 and 7 vary the index value. The increase in the 
smaller-sized particle population is evident when indices 2, 3, and 5 
(Runs 1, 4, and 7, respectively) are compared. As mentioned earlier, 
the impact of the flocculation/disruption processes overwhelmed these 
initial differences. At 50 sec the population distributions of Runs 4 
and 7 were essentially identical and very similar to the Run 1 distribution 
(which was evaluated at 60 sec). The increase in volume fraction (Run 3) 
resulted in slightly higher numbers of larger particles in comparison 
to Run 1. This is seen at both comparison times. As stated before, it is 
this increase which shortened the settling time. The increase in smaller 
(sizes 1-4) particles in Run 5 correctly reflected the increased disruption 
rate over Run 1 at both time comparisons. The comcomitant decrease 
of the concentrations of the larger particles (8-10) was also successfully 
modeled. 

This model for quiescent hindered settling of flocculating slurries 
predicts the expected response of the system to variation in input param- 
eters. These parameters include particle density, viscosity, particle size, 
clarifier height, percent solids, particle size distribution, and particle 
disruption rates. The computer program analyzing the model can be 
run on a relatively small computer in 10 min or less. It should be noted 
that the model can also be used for larger-sized batch clarifiers (on the 
order of 1 m and taller). The model only requires that the proper variable 
values be selected to describe the system under consideration. 
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