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Settling of Flocculating Slurries
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ASSOCIATED WATER AND AIR RESOURCES ENGINEERS, INC,
NASHVILLE, TENNESSEE 37204

ANN N. CLARKE and DAVID J. WILSON*

DEPARTMENTS OF CHEMISTRY AND ENVIRONMENTAL ENGINEERING
VANDERBILT UNIVERSITY
NASHVILLE, TENNESSEE 37235

Abstract

The operation of quiescent (batch) clarifiers operating in the Class ITI mode
(hindered settling) with flocculating slurries is modeled by means of a set of
nonlinear partial differential equations, the continuity equations for the
individual species of particles. Disintegration of the larger particles by viscous
drag forces is assumed to be first-order. The equations are integrated numeri-
cally for the case of batch settling (such as is used in jar tests), and the depend-
ence of settling characteristics on the parameters of the model is studied.

INTRODUCTION

Clarifiers and thickeners represent one of the most common types of
equipment used in the processing of minerals and the treatment of in-
dustrial and municipal wastewaters. In the activated sludge process, settled
wastewater is mixed with microorganism-rich sludge recycled from a
clarifier for biological oxidation. At the present time, precipitation and
flocculation followed by clarification is the most widely used class of
methods for the removal of toxic metals from waste streams (I-4). Clari-
fiers operate in four modes (5): Class I, in which nonflocculating particles

*To whom reprint requests should be addressed.
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in quite dilute suspensions settle independently of each other, usually
according to Stokes’ law; Class II, in which the particles’ settling motion
is that of independent, freely falling particles, but in which collisions
between particles may result in agglomeration, first analyzed by
Smoluchowski (6, 7); Class III, or hindered settling, zone settling, or
blanket settling, in which (possibly agglomerating) particles are sufficiently
close together that one can no longer describe their motion as independent
free-fall in a viscous medium; and Class IV, or compression settling,
in which water is slowly squeezed up through the narrow interstices of a
relatively dense floc by virtue of the weight of the overlying floc. We shall
be concerned with Class 11l operation, with Classes I and II included as
limiting cases of the more general analysis.

Fair, Geyer, and Okun (8) give a good discussion of hindered settling,
including its relation to filter backwashing, and the effect of viscous
shear forces in causing the particles to break up on reaching a limiting
size. Fitch, in McCabe and Eckenfelder’s book (9), describes the four
types of settling and gives a qualitative analysis of zone settling. Canale
and Borchardt discuss zone settling in some detail, with engineering
design formulas, but no mathematical model of the process (5). Eckenfelder
(10), Eckenfelder and Thackston (/7), and Metcalf and Eddy, Inc. (12)
discuss the topic, conciuding that heavy reliance on batch settling data
is necessary, inasmuch as detailed analysis appears to be intractable.
Early papers of interest in that they introduced new, more sophisticated
concepts into the field of sedimentation include Hazen (/3), Coe and
Clevinger (14), Smoluchowski (6, 7), Camp (/5), and Steinour (/6).

The modern approach to the theory of Class 1II sedimentation dates
back to the mathematician Kynch (17); he assumed that the velocity of
fall of a particle depends only on the local particle concentration, and
then made use of the continuity equation. He was able to demonstrate
the formation of layers where the particle density abruptly changes its
value. Despite the fact that computational limitations forced Kynch
to restrict himself to monodisperse systems without flocculation, it is
clear from subsequent work that this paper was of major importance
in that it inspired new approaches and efforts in the field. Dick and
Ewing found that, contrary to Kynch’s assumption, the initial settling
velocity of biological sludges does depend (weakly) on tank depth, al-
though sand settling velocities are independent of tank depth, in agreement
with Kynch’s postulate (/8). Talmage and Fitch (19) and Fitch (20) also
observed that Kynch’s postulate is not valid as one approaches Class
1V conditions (compression) and noted that the theory does not include
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flocculation, an important factor. Shannon and his co-workers in a
series of papers examined batch and continuous thickening of spheres
without flocculation; they also showed that the intersection of a rising
concentration gradient with the clear fluid-slurry interface is responsible
for nonlinearity in settling curves (21-23).

Scott, examining mathematical models for the mechanism of thicken-
ing, presented a useful formula for calculating the lab velocity of a falling
particle” with a boundary layer of bound water in terms of the solids
concentration (24). The importance of this boundary layer of water was
previously noted by Foust et al. (25). Vand published a formula for the
viscosity of a suspension in terms of solvent viscosity, solids volume
fraction, and a shape factor (26); this was an extension of earlier work
by Einstein (27). Comings and co-workers developed a general expression
for the hindered settling capacities from measured settling rates and
slurry properties (28). They pointed out that the density and viscosity
of the slurry, rather than those of the liquid, should be used. McLaughlin
carried out a general analysis of the settling of suspensions in terms of
the equations of continuity; he included fiocculation and diffusion effects
but did not pursue the differential equations in detail (29). Gaudin and
Fuerstenau’s work is concerned with compression (Class IV) settling,
but their model of fluid flow through tubes and tubules in the shurry
appears to lend itself well to analysis of fluid flow through a sludge
blanket in Class 111 operation (30). Thomas has related hindered settling
floc characteristics to rheological parameters and has published experi-
mental data on the behavior of non-Newtonian suspensions (31, 32).
Tarrer and co-workers combined Kynch’s theory for hindered batch
settling with a plug flow fluid pattern to compute the effect of sludge
blanket height and solids residence time on the thickening capacity of
continuous flow clarifiers (33). Reimann and Menschel presented a
derivation of the settling rate expression for nonflocculating suspensions
of spherical, monodisperse particles for porosities (voids) of 0.3 to 0.6;
they found good agreement with the experimental data (34).

Tracy and Keinath (35) published an analysis of a dynamic model for
the thickening of activated sludge; the model incorporates all the oper-
ating parameters pertaining to the thickening function of a secondary
clarifier but does not appear to take flocculation and particle disruption
into account. The paper also contains a good review of the literature
up to 1972. Gemmell (36) discussed the principles and theory as they
bear on the mathematical modeling and simulation of the aggregation
of suspended particles. Dick and Suidan (37) discussed the simulation
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of clarification and thickening, and presented a well-documented com-
puter program for use in such modeling.

Davies et al. (38) and Carstensen et al. (39) have both noted the marked
effect of zeta potential on hindered settling rates. Davies suggests that
maximum reduction of surface polarity without flocculation is the most
efficient condition for gravity settling. Studies on the hindered settling
of barium sulfate (40); calcium carbonate in p-xylene (41); calcium
carbonate in water (42); quartz, magnetite, and coal (43); titanium
dioxide (44); and polystyrene spheres in cyclohexanol at various Reynolds
numbers (45) give a sampling of the experimental data available beyond
what has been cited above.

Interestingly enough, the detailed experimental studies of Barnea and
Mizrahi (46) on settling liquid-liquid dispersions show no evidence of
rising droplet concentration gradients. Dixon (47) has recently claimed
that the occurrence of such gradients can only be interpreted as indicating
physical contact between the particles—i.e., Class 1V settling. We suspect
that Dixon’s neglect of inertial forces and the finite thickness of the
liquid boundary layers around the particles may make the analysis not
quite as straightforward as he indicates. His work certainly poses a
challenge to the conclusions of Coe and Clevinger (14), Kynch (17),
and many other workers in the field, and is in major part responsible
for our interest in modeling Class III settling.

ANALYSIS OF BATCH SETTLING

We analyze the operation of quiescent batch clarifiers; this is relevant
to the commonly used batch settling tests used in preliminary studies,
and with minor modification it can be made to describe the operation of
rectangular clarifiers, to be discussed in a later paper.

The continuity equation for coalescing and disintegrating particles
we take to be

[n/21
%(x, t) = j;1 CiCumjl0; = O jllr; + o)’

N-—n a
- j;l Cncjlvn - Ujln(rn + rj)2 - a(vgcn)
N . [n/2]
Z knm,m——ncm(1 + an,m—n) - 'Zl k;’,n—jcm
= i=

n+1
n=12... (1)

+

m
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Here ¢, = concentration of k-particles, aggregates of k elementary par-
ticles

2
v, = ﬁé_;;%c()c]_)gi = velocity of a k-particle relative to the sur-
rounding liquid, calculated from Stokes’ law
(assumes low Reynolds numbers)
. . . 3kV Y3
r, = radius of a k-particle, assumed spherical, = <_47r—>
¥V, = volume of an elementary particle
V. = volume of a k-particle, = kV,
n(e) = viscosity, a function of particle concentrations
Ap(c) = difference in density between a particle and the surrounding
slurry, a function of particle concentrations
v, = velocity of a k-particle relative to the laboratory
v” = velocity of liquid relative to the laboratory
t = time
x = distance down from the top of the clarifier
= rate constant for the disruption of an m-particle into an n-
particle and an (m — n)-particle
¢ = (¢y, ¢3, €3, - . .) = concentration vector
g = gravitational constant
O, ;=1ifn=j =0ifn +#j
[n/2] = greatest integer < n/2
N = maximum number of elementary particles which may agglome-
rate to form a composite particle

km

nm—n

In Eq. (1), the first two summations on the right-hand side describe
the coalescence of particles through collisions; the next term, the di-
vergence of the particle flux due to free fall through the liquid; and the
last two summations, the disruption of composite particles through
viscous drag forces.

In quiescent operation the volume flow of solids down is equal to
the volume flow of liquid up, which yields

Yo,V + "1 =Y cV,)=0 ?))
SO
- Z U:»Cn Vn
vll —_ T:-W; (3)
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Now v; = v, + v", and the v, are known functions of ¢; we need the v;
and v” in terms of the v,.

- Z (Un + Uu)cn Vn

T =Y @
from Eq. (3), from which
v = —Z vnchn (5)
and
Ullc = U — Z UyCy Vn (6)
It is easily shown that
Ap(c) = (ps - pl)(l - Z chn) (7)

where p, = density of solid particles
p,; = density of liquid

We use Einstein’s formula (27) or one of the more elaborate formulas
due to Vand (26) to calculate the viscosity of the slurry:

n =1no(l + 2.5¢)  (Einstein) (8)
n _ 2.5¢ +27c

log L = T 0:609 ©)

e =1+ 2.5¢ + 7.349¢* + - .. (10)

¢ = Y, c,V,, the volume solids concentration

These formulas all assume spherical particles.

We estimate the disruption rate constants by assuming that they
increase proportionally to the viscous drag force on the particle, given
for an m-particle by mV,g(Ap), and that they are proportional to the
number of ways in which the m elementary particles can be partitioned
into two groups, one of n-particles and the other of m — n-particles,
mi[ri(m — n)!]. Thus, with some trepidation, we take

mm!

ke = K(Ap)m

(11)

where x is a proportionality constant to be assigned a value large enough
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to prevent composite particles from agglomerating to unrealistically
large sizes.

This completes the specification of parameters and functions in Eq.
(1). We next assign values to ¢(x, 0), the initial concentration distribu-
tion, and then integrate Eq. (1) forward in time, noting that our boundary
conditions are zero flux at the top and bottom of the clarifier, This will
be done by means of a predictor-corrector method which we have used
previously (48, 49) and found to be quite stable. We choose a discrete
set of equally spaced values of x; x, =(m —-HAx, m=1,2,..., M.
This mesh approach converts Eq. (1) into a set of nonlinear first-order
ordinary differential equations, as follows. We let ¢,(x,,, t) = c(n, m, t).
Then

de 1 , ,
E(n, m,t) = —A—x[——v (n,m, )c(n, m, t) + v(n,m — 1, )e(n,m — 1, 1)]

(/21

+ Y cn, m, t)e(n — j, m, t)|o(n, m, t) — v(n ~ j, m, t)]
d=1

X 7ty + 1)
N—n

- Z C(j, m, t)C(n, m, t)IU(n, m, t) - U(j, m, t)ln(rj + rn)z

i=1
N
+ Z ki,j—nc(j’ m’ t)(l + 5,,'1'_")
j=n+1
[n/2]
- Y K} eln,mt)y n=1,2,...,N (12)
j=1

m=12..., M

M = number of slabs into which the clarifier is partitioned.

The boundary condition at the top of the clarifier corresponds to the
elimination of particle flux into the top slab (of thickness Ax) from
above (the second term in the square bracket of Eq. 12). The boundary
condition at the bottom of the clarifier corresponds to elimination of
particle flux from the bottom of the bottom slab—deletion of the term
—v'(n, 1, t)e(n, 1, t)/Ax from Eq. (12), m = 1.

We now have specified all of the de(n, m, t)/dt as functions of {c(i, j, t)} =
&(1), the array of all the particle concentrations at the various values of
x. We write this more compactly as

d
7 mt) = fIE®)] 2)
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The integration of Eq. (I12°) is then done by the following predictor-
corrector algorithm. Predictor (starter formuia):

c*(n, m, At) = c(n, m, 0) + Arf[¢(0)] (13)
Predictor (general formula):
c¥(n, myt + At) = c(n, m, t — At) + 2A4 ()] (14)

Corrector:
clnm,t + A1) = el m, 1) + 5 YT + /50 + A0 (19)

Our actual calculation of the velocities of fall of the particles relative
to the liquid was done by a refinement of Stokes’ law, which permits
us to deal with intermediate Reynolds numbers which might arise with
slurries of solids having a high density. We use an improved formula for
the drag coefficient (50):

24 3
CD = _R_ R 172 + 0.34 (16)
R, = 2vrp/y a7

where v = particle velocity
r = particle radius
p = slurry density
n = slurry viscosity

This yields the following result for the velocity of the particle relative
to the liquid:

2gr,2Ap 1
n = 172
o I:l + 3(%) + 0.34pr,,v,,:|

where Ap = particle density — slurry density

v (18)

This is readily solved iteratively for v,; one starts with the Stokes’ law
expression for v, on the right-hand side.

In our analysis we have assumed perfect packing—that is, an n-particle
(an agglomeration of n elementary particles) is assumed to contain no
voids. This model should be valid for droplet coalescence, but certainly
underestimates the volume of composite solid particles. Vold investigated
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a model similar to that which we are using (51), and found that the
radius of an n-particle, r,, is given by

r, = rn®* 19

from which we find
Vn = V1n1'29 (20)
for the volume of an n-particle, and

Pn = Priqg = (p1 — pugn~%° (21)

for the difference between the density of an n-particle and the density of
the liquid phase. The slurry density is given by

Psturry = Priq + (01 — Pug)ViZne, (22)

We assume that it is liquid phase which is occluded in the composite
particles.

As we shall see in the next section, solution of Eq. (12) does not lead
to the rising plane of slower-settling floc remarked on by many workers,
the existence of which is, according to Dixon (47), evidence that
Class IV settling (compaction) is starting to take place. We felt that
failure to observe this plane might be telling us more about the limitations
of our mathematics than about physical reality, so have explored another
discrete representation of Eq. (1). We wish to take account of the fact
that a particle falling into a region of relatively high solids volume fraction
is slowed down by the increased viscosity and decreased difference in
density between the particle and the surrounding slurry. For simplicity
we examine monodisperse systems; generalization to flocculating systems
is straightforward, and our computer programs deal with flocculating
systems.

We first approximated Eq. (1), written for monodisperse systems, by

g;(m, t) = {[v(m — 1,¢t) + v'(m, t)]lc(m — 1, 1) + c(m, t)]

—[v'im, t) + v'(m + 1, )]lcim, t) + c(m + 1, 1)]}/4Ax
(23)
Here we are simply using arithmetic averages of the particle concentra-
tions and velocities at the centers of two adjacent slabs to calculate the

flux of particles through the boundary between the slabs. This was un-
successful; the very large concentration gradients which can occur led to
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large fluxes from slabs which were already nearly empty, resulting in
negative concentrations. We concluded that we had best focus our atten-
tion on finding a suitable average of the velocities in our two adjacent
slabs. We denote the slab velocity of a particle falling through the bound-
ary from slab i — 1 into slab i by v;_ ;. For the case where vj_, = v},
we would expect that vj_, ; = v;. If either vj or v}_ is very small, we wish
to have v;_ ; very small. An average which satisfies both of these re-
quirements is given by
/ 2v;_ 1}

Vi = v;__l _+ 7, (24)

We then approximate Eq. (1), written for monodisperse systems, by

22 m 1) = [t 1 DD — 1, 1) = th i, YA (25)

The results obtained using this modification are discussed in the next
section,

RESULTS

The model for quiescent hindered settling of flocculating particles was
defined by nine input variables. These are listed in Table 1 along with
the values employed in the series of runs used to determine model re-
sponse. A time step and liquid density must also be included. For this
study the liquid density was chosen to be 1.00 g/cm® and not varied.

Run 1. Run | was taken to be the standard run. In subsequent runs
one variable at a time was changed and the results compared to the
standard run. A clarifier height of 20 cm was selected in an effort to relate
the simulation results to the jar test. The jar test is frequently used to
assess the settling characteristics of a floc to determine a change in floc
nature or prior to the design or modification of a clarification system.
Figure 1 shows the settling curves generated by this model for the standard
case. These were plotted as compartment number vs total mass per unit
volume (in grams per cubic centimeter) every 10 sec. Table 2 describes
the settling in terms of percent of the total mass found in the bottom
compartment of the clarifier at various elapsed times. Over one-half the
mass had settled out in 30 sec; over 909/ in 110 sec. It should be noted
that a compartment comprised 109, of the total clarifier volume. Table
3 presents a third means of assessing the settling characteristics. Spe-
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It 60 50 40 30 20 I0sec
3-
g |
S5
E |
-1
£
S |
9..
107° 3x0° 0% 3x0¢ 107 3xi0® 107
concentration, gm/cm®
Fic. 1. Total mass per compartment vs compartment number for Run 1,
standard conditions.
TABLE 2
Percent Total Mass in Last Compartment
Run number
Time (sec) 1 2 3 4 5 6 7 8 10 11
0 10.0 100 100 100 100 5.0 100 10.0 100 10.00
5 23.2 187 158 127 15.1 12.8
10 232 372 280 224 209 11.6 21.2 155 232 68.0
15 50.7 37.3 294 262 28.0 18.2
20 37.2 624 465 364 314 186 349 200 372 9502
25 714 554 433 36.6 41.8
30 50.7 77.6 63.7 499 41.6 257 48.5 50.7 95.1
35 819 71.1 56.1 464 54.8
40 624 848 774 61.7 508 32.8 604 62.4
45 82.5 66.6 54.9 65.4
50 71.4 86.5 70.8 58.6 399 69.7 71.3
55 89.5 742 61.8 73.3
60 77.6 91.7 77.1 646 469 763 77.6
65 93.3 79.5 67.1 78.7
70 81.9 53.8 81.9
80 84.8 60.2 84.8
90 87.0 65.9 87.0
100 88.8 70.8 88.7
110 90.2 74.8 90.2
120 91.6 71.9
130 92.8
140 93.9
150 94.9
160 95.7
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TABLE 3

Average Rate of Reduction of Initial Concentration, Compartments/sec

1/2 original 1/10 original 1/100 original
Run no. concentration concentration concentration
1,6 0.153 0.051 0.038
2 0.305 0.102 N.A.
3 0.188 0.118 0.036
4 0.154 0.052 @
5 0.096 0.041 é
7 0.154 0.046 “

¢ Reduction not achieved by 65 sec.

cifically, this compares the average rate at which the central concentration
in a compartment is reduced by 50, 90, and 99 %;.

Run 2. The first variable changed was the floc density. Run 2 employed
a floc density of 1.10 g/cm® as compared to the standard 1.05 g/cm?
value. Since the floc density appeared in the model as a difference, peyo. —
Pliquia (€.8-, EQ. 18), this new value represented a 1007 increase (viz.,
1.05 — 1.00 = 0.05 vs 1.10 — 1.00 = 0.10). As anticipated, the impact
was very great, Figure 2 shows the settling curves for Run 2, while Tables
2 and 3 show the effect numerically. The factor of 2 is evident in both
tables. The percent settled into the bottom compartment at 20 sec in Run
1 equaled that percentage at 10 sec for Run 2; at 40 sec in Run 1, 20 sec
in Run 2; etc. The reduction rate for Run 2 was twice that for Run 1 for

30 20 10sec

[4)) (<]

-~

compartment no.

w0

-4 -3 ,0—2
concentration

3
o

Fic. 2. Total mass per compartment vs compartment number for Run 2,
ps = 1.10.
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the 1/2 and 1/10 cases. Insufficient data were generated to evaluate the
reduction to 1/100 of the original compartment concentration.

Runs 3 and 9. According to Table I, Run 3 had volume fraction solids
of 0.005 compared to the standard value of 0.001. Figure 3 shows the
corresponding settling curves. As anticipated, the increased solids con-
centration in the clarifier increased the settling rate. This reflected the
increase in the rate of formation of the larger sized particles. The values
listed in Table 2 show the increased percent solids in the bottom com-
partment in Run 3 as compared to Run 1. The corresponding increased
reduction rate is seen in Table 3. However, we also anticipate that con-
tinued increase in the volume fraction will eventually have the opposite
effect when a sufficiently high value is reached. The ambient viscosity is
an increasing function of particle concentration (see Eq. 10). As such,
the resultant increase in viscosity could offset the response from increased
particle size and retard settling. We verified this in Run 9 where we
employed volume fraction solids of 0.130. Table 4 summarizes these
results. For a given elapsed time, even as little as 20 sec, there were ap-
preciably fewer solids amassed in the bottom compartment for Run 9
than were amassed in either Run 1 or 3, indicating retarded settling.

Runs 4 and 7. The fourth and seventh runs varied the index used to
define the particle distribution, Particles were distributed inversely pro-
portional to their size raised to the given index (power). Increasing the
distribution index weighted the population toward the smaller-sized
particles. Since smaller particles have slower settling velocities, scttling
should be retarded. Figures 4 and 5 are the settling curves for the runs

| 60 S50 40 30 20 10sec
3-
g1
S5t
E |
2
e
o
st
of
1078 1074 1073 1072

concentration

F1G. 3. Total mass per compartment vs compartment number for Run 3,
VFRAC = 0.005.
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TABLE 4
Summary of Volume Fraction (VFRAC) Variation Study
Parameter Run 1 Run 3 Run 9
VFRAC 0.001 0.005 0.130
o 0.01 0.01 0.01
n° 0.010025 0.01013 0.02
Percent of Toral Mass in Compartment 10
At 0Osec 19.9 10.0 10.0
5 — 18.7 15.8
10 23.2 28.0 21.6
20 37.2 46.5 32.2°

2 Calculated from Eq. (10) at time = 0 sec.
b Extrapolated.
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where the index equaled 5 and 7, respectively. However, the difference
was not great. This was due to the occurrence of the flocculation and
disruption processes. Numerical representation of these results is found
in Tables 2 and 3. The index = 3 run was only 1 or 2% lower in settled
mass than the standard, index = 2, run. Similarly, the index = 3 and
index = 5 runs agreed to within a few percent, the latter run correctly
accumulating the slightly lower percent mass. In Table 3, Runs 1 and
3 are identical to within round-off error as is the value for the 50%
reduction obtained for Run 7. A more sensitive analysis would be the
evaluation and comparison of the residual mass in the first compartment
for these three runs. Such residual mass can be considered “fines.” Table
5 presents this evaluation. As anticipated, the higher the index, the higher
the residual solids retained in the top compartment. Again, this was a
result of the higher number of smaller (especially unit sized), slower falling
particles initially present.

Run 5. In Run 5 the number of disruptions experienced by each particle
size was increased from 0.5 to 1.0 disruptions per second (AKAP). As
in Runs 4 and 7, this change weighted the population toward the smaller
sizes, and slower settling was anticipated. Figure 6 shows the settling
curves for Run 5. A significant retardation in settling rate did occur.
This is easily verified by the numerical presentation in Tables 2 and 3.
While the initial differences in particle distribution created by index
variation can be reduced in time by the agglomeration/disruption pro-

TABLE 5

Comparison of Index Runs, Percent Residual Mass® in Compartment 1

Run 1 Run 4 Run 7
Time (sec) (index = 2) (index = 3) (index = 5)

0 10.0 10.0 10.0
10 33.9 36.4 40.6
20 15.2 16.6 19.2
30 8.0 8.9 10.3
40 4.6 5.0 5.8
50 2.6 2.9 34
60 1.5 1.7 2.3

% of Total Mass® in Compartment 10 after 60 sec

60 77.6 77.1 76.3

4 Percent of initial mass, i.e., in compartment at time = 0.
¥ Percent of mass from all 10 compartments.
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FiG. 6. Total mass per compartment vs compartment number for Run 5,
x = 1,00 disruptions/sec.

cesses, this is not the case for variations in AKAP values, since the disrup-
tion process is going on continuously during the run.

Run 6. In Run 6 two variables were simuitaneously changed. These
were clarifier height, CLARL, and the number of compartments, NC.
This was done in order to retain the same DELTAX value (see Eq. 12,
flux term), height of each compartment. Doubling the height of the
clarifier essentially doubled the settling period by a factor of 2. The
settling curves can be seen in Fig. 7. The increase in settling time was
easily determined by comparison of the percent total solids mass in
the bottom compartment at time 7 for Run 1 and 27T for Run 2 in Table
2—vis., at 20 sec, Run 1, 37.29, and at 40 sec, Run 6, 32.8%; 40 sec,
Run 1, 62.49, and 80 sec, Run 6, 60.29; etc. A 40-cm clarifier can also
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FiG. 7. Total mass per compartment vs compartment number for Run 6,
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be representative of other jar test systems. It should be noted that pre-
liminary studies showed that increasing the number of compartments to
increase the sharpness of descent linearly increased the computer time
but only fractionally improved the definition of the boundary between the
subsiding slurry and the supernatant. Doubling the number of compart-
ments for a given clarifier height (i.e., halving DELTAX) only improved
the sharpness of the slurry-supernatant boundary by 25%,. Therefore a
reasonable number of compartments (and concomitant DELTAX value)
was selected without additional concern about increasing boundary
sharpness. Moreover, our experience, especially with biological flocs,
indicates that varying degrees of boundary definition in settling occur.

Run 8. The increase in system viscosity by increasing 7, in Run 8
resulted in a different effect than increasing the viscosity of the system by
increasing the volume fraction of solids. As anticipated, the settling time
was increased by a factor of approximately 2 over the settling time deter-
mined in the standard run (5, = 0.01 and 0.02 P in Runs 1 and 8, respec-
tively). Figure 8 shows a few settling curves (until time = 20 sec). The
percent total mass in the last compartment for this run is slightly more
than 1/2 the amount settled in the standard run. This is a ramification
of the fact that the viscosity, through the definition of V, (Eq. 18), not
only affected the flux term but also the agglomeration terms (see Eq. 1,
terms 1, 2, and 3).

Run 10. The same variable values were employed in Run 10 as were
used in the standard run. The difference lay in the calculation of the flux,
using a “‘reduced” velocity as discussed earlier (see Eqgs. 24 and 25). We
anticipated a “back-up” (i.e., increase) in solids in the penultimate (9th)
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FiG. 8. Total mass per compartment vs compartment number for Run 8,
o = 0.02 P.
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Fi1G. 9. Total mass per compartment vs compartment number for Run 10,
Standard conditions employing ‘‘reduced velocity.”

compartment as solids built up in the last, making it more difficult for
additional mass to enter the last compartment. Figure 9 shows the resultant
settling curves. As anticipated, the model yielded little difference in the
amount of solids accumulated in the bottom compartment (see Table 2).
Rather, the effect can be seen by comparing the percent solids in the
9th compartments for Runs 1 and 10. As the time elapsed increased,
even at the relatively low volume fraction solids of 0.001, a difference
does become evident. See Table 6. This difference increased with in-
creasing time,

Run 11. The final value varied was the size of the unit particle radius.

TABLE 6

Percent of Total Mass in Penultimate (9th) Compartment

Time (sec) Run 1 Run 10
0 10.0 10.0
10 10.0 10.0
20 9.9 9.9
30 9.3 9.3
40 7.9 8.0
50 6.3 6.4
60 4.9 50
70 39 4.0
80 33 34
90 29 3.0
100 2.6 2.7

110 23 2.5
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Increasing the unit particle size had a dramatic effect, greatly reducing
the settling time. As seen in Table 2, after only 30 sec over 95% of the
total system’s mass had entered the bottom compartment. This compared
with only 50.7% in the standard run. When only 10 sec had elapsed,
689, had reached bottom. In the same period only 23.29 had fallen in
the Run 1 simulation.

Because of the continuous flocculation/disruption processes accom-
panying the particle flux, the particle size distribution in each compartment
was continuously changing. We present in Table 7 particle distributions
(in Compartment 10) for Runs 1-5 and 7 at time 0, 25, and 50 sec. In order
to facilitate meaningful comparisons, particle populations are reported
per milligram of floc.

As described earlier, varying the index will change the initial size
distribution. Runs 4 and 7 vary the index value. The increase in the
smaller-sized particle population is evident when indices 2, 3, and 5
(Runs 1, 4, and 7, respectively) are compared. As mentioned earlier,
the impact of the flocculation/disruption processes overwhelmed these
initial differences. At 50sec the population distributions of Runs 4
and 7 were essentially identical and very similar to the Run 1 distribution
(which was evaluated at 60 sec). The increase in volume fraction (Run 3)
resulted in slightly higher numbers of larger particles in comparison
to Run 1. This is seen at both comparison times. As stated before, it is
this increase which shortened the settling time. The increase in smaller
(sizes 1-4) particles in Run 5 correctly reflected the increased disruption
rate over Run 1 at both time comparisons. The comcomitant decrease
of the concentrations of the larger particles (§-10) was also successfully
modeled.

This model for quiescent hindered settling of flocculating slurries
predicts the expected response of the system to variation in input param-
eters. These parameters include particle density, viscosity, particle size,
clarifier height, percent solids, particle size distribution, and particle
disruption rates. The computer program analyzing the model can be
run on a relatively small computer in 10 min or less. It should be noted
that the model can also be used for larger-sized batch clarifiers (on the
order of 1 m and taller). The model only requires that the proper variable
values be selected to describe the system under consideration.
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